Rescue of *Drosophila Melanogaster l(2)35Aa* lethality is only mediated by polypeptide GalNAc-transferase *pgant35A*, but not by the evolutionary conserved human ortholog GalNAc-transferase-T11

Eric P. Bennett · Ya-Wen Chen · Tilo Schwientek · Ulla Mandel · Katrine ter-Borch Gram Schjoldager · Stephen M. Cohen · Henrik Clausen

Received: 18 February 2010 / Revised: 7 April 2010 / Accepted: 7 April 2010 / Published online: 27 April 2010 © Springer Science+Business Media, LLC 2010

Abstract The *Drosophila l(2)35Aa* gene encodes a UDP-*N*-acetylgalactosamine: Polypeptide *N*-acetylgalactosaminyltransferase, essential for embryogenesis and development (*J. Biol. Chem.* 277, 22623–22638; *J. Biol. Chem.* 277, 22616–22). *l(2)35Aa*, also known as *pgant35A*, is a member of a large evolutionarily conserved family of genes encoding

E. P. Bennett · U. Mandel · K. t.-B. G. Schjoldager · H. Clausen Copenhagen Center for Glycomics, University of Copenhagen, Nørre Alle 20, 2200 Copenhagen N, Denmark

E. P. Bennett (☑) · U. Mandel
Department of Odontology, Faculty of Health Sciences,
University of Copenhagen,
Nørre Alle 20,
2200 Copenhagen N, Denmark
e-mail: epb@sund.ku.dk

H. Clausen

Department of Cellular and Molecular Medicine, University of Copenhagen, Nørre Alle 20, 2200 Copenhagen N, Denmark

Y.-W. Chen · S. M. Cohen European Molecular Biology Laboratory, Heidelberg, Germany

T. Schwientek Institut für Biochemie II, Universität Köln, Joseph-Stelzmann-Str. 52, 50931 Köln, Germany

Present Address:
Y.-W. Chen · S. M. Cohen
Temasek Life Sciences Laboratory,
1 Research Link,
Singapore 117604, Singapore

polypeptide GalNAc-transferases. Phylogenetic and functional analyses have proposed that subfamilies of orthologous GalNAc-transferase genes are conserved in species, suggesting that they serve distinct functions in vivo. Based on sequence alignments, pgant35A and human GALNT11 are thought to belong to a distinct subfamily. Recent in vitro studies have shown that pgant35A and pgant7, encoding enzymes from different subfamilies, prefer different acceptor substrates, whereas the orthologous pgant35A and human GALNT11 gene products possess, 1) conserved substrate preferences and 2) similar acceptor site preferences in vitro. In line with the *in vitro pgant7* studies, we show that l(2)35Aa lethality is not rescued by ectopic pgant7 expression. Remarkably and in contrast to this observation, the human pgant35A ortholog, GALNT11, was shown not to support rescue of the *l*(2)35Aa lethality. By use of genetic "domain swapping" experiments we demonstrate, that lack of rescue was not caused by inappropriate sub-cellular targeting of functionally active GalNAc-T11. Collectively our results show, that fly embryogenesis specifically requires functional pgant35A, and that the presence of this gene product during fly embryogenesis is functionally distinct from other Drosophila GalNAc-transferase isoforms and from the proposed human ortholog GALNT11.

Keywords GalNAc-transferase \cdot GALNT11 \cdot pgant35A \cdot Drosophila \cdot Glycosyltransferase \cdot Mucin-type O-glycosylation

Abbreviations

GalNAc-transferase UDP-N-acetyl- α -D-

galactosamine:Polypeptide
N-acetylgalactosaminyltransferase

PCR Mab GalNAc-T11 is CG7480 (=pgant35A)

polymerase chain reaction monoclonal antibody fly ortholog of human CG6394 (=pgant7) the fly ortholog of human GalNAc-T7

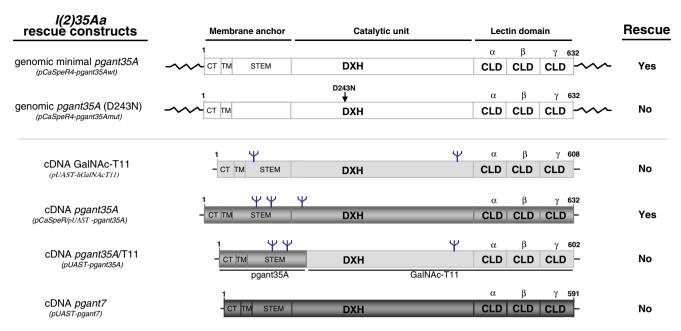
Introduction

Mucin-type O-glycosylation is one of the most abundant types of protein glycosylation conserved throughout evolution from C.elegans, Drosophila to man [1, 2]. Mucin-type O-glycans are widely found on most secreted and cell surface glycoproteins, and are involved in important biological functions, such as cell-cell interactions [3, 4], intracellular transport and sorting of glycoproteins [5-13], receptor ligand interactions [14], leukocyte trafficking [15, 16], and cancer metastasis [17]. The initial step in mucintype O-glycosylation, involving transfer of GalNAc from UDP-GalNAc to serine or threonine residues in proteins, is controlled by a large homologous family of UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferases (GalNActransferases) (EC 2.4.1.41). This gene family is found in all higher eukaryotic species and includes >10 members in Drosophila, 9 in C.elegans and 20 members in man [18]. As such, the GalNAc-transferase gene family constitutes by far the largest glycosyltransferase gene-family catalysing a single glycosidic linkage. It is currently not clear why such a large gene family has evolved. GalNAc-transferase isoforms have distinct peptide substrate specificities and expression patterns, however, there is considerable overlap in both specificities and expression patterns among isoforms [19–21]. In striking contrast to this enormous potential redundancy and genetic backup for control of the first initiation step in O-glycosylation, the second step being core 1 (Gal\beta1-3GalNAcα1-O-Ser/Thr) or core 3 (GlcNAcβ1-3GalNAcα1-O-Ser/Thr) O-glycosylation is covered only by single genes, and importantly the core 1 \(\beta 3\)galactosyltransferase is essential for mouse embryogenesis [22].

Targeted disruption of GalNAc-transferase genes in mouse has not provided clear evidence for distinct phenotypes [2], although a recent report demonstrates that the GalNAc-T1 isoform is required for normal B-cell development and blood clotting factor levels [23]. A more conclusive role of individual GalNAc-transferase isoforms has emerged from studies of the autosomal recessive diseases familial tumoral calcinosis and hyperostosishyperphosphatemia syndrome [24], which may be caused by mutations in the GALNT3 gene as well as FGF23, a key regulator of phosphate homeostasis. The GalNAc-T3 isoform mediates O-glycosylation of a specific acceptor site in a furin protease inactivating site of FGF23, which was

found to be required for normal function of this important serum factor [25]. This is the first example of molecular dissection of the importance of individual GalNActransferases. The finding that mutations in either GALNT3 or FGF23 results in presently indistinguishable clinical features, suggests that O-glycosylation is indeed governed by a high degree of genetic and functional specificity. It furthermore seems to predict that clinical characteristics associated with loss of function of individual GalNActransferase isoforms may be caused by very subtle changes in O-glycosylation of specific sites in a limited number of glycoproteins, which combined with the high degree of redundancy in O-glycosylation in general makes it very difficult to identify and decipher defects in GalNActransferase mediated O-glycosylation.

In this respect the fruit fly, Drosophila melanogaster, offers a simpler model system with availability of well defined genetic tools, and we and others have previously demonstrated that a single GalNAc-transferase isoform, pgant35A, is an essential gene for development [26, 27]. More recent studies have shown that the *pgant35A* gene has an important role for epithelial tube formation [28], but our understanding of the role of GalNAc-transferase isoforms and O-glycosylation in fly development is still limited.


In the present study we have used the Drosophila pgant35A model system to shed light on the importance of distinct GalNAc-transferase isoforms, their functions and evolutionary conservation. With a transgene-based assay, we found that l(2)35Aa lethality can be fully rescued by a minimal transgene containing essentially only the coding region of pgant35A. Using this construct we found that the catalytic activity of pgant35A was required for rescue. We also demonstrated that another Drosophila GalNActransferase isoform, pgant7, with different in vitro substrate specificity did not rescue. Finally, we tested our previous hypothesis of evolutionary conserved subfamilies of GalNAc-transferases, and show that the predicted human ortholog GALNT11 surprisingly does not substitute for pgant35A in vivo. Despite the finding that the catalytic functions evaluated by in vitro assays apparently are conserved, the human enzyme cannot replace the fly enzyme in vivo. Possible explanations for this are discussed.

Materials and methods

Genomic pgant35A and pgant35A (D243N) complementation constructs

To eliminate the potential influence of flanking Rab14 and Spell sequences from the original 5.2 kbp genomic pgant35A complementation clone pCaGa1 [29], the DNA was sub-cloned by PCR to yield a 3.8 Kbp genomic clone

Fig. 1 Schematic representation of all constructs generated and outcome of *pgant35A*³ (described as *l(2)35Aa*^{SFI2} [29]) rescue attempts. Genomic *pgant35A* rescue constructs are shown in white, human GalNAc-T11 cDNA construct in patterned light grey, *Drosophila pgant35A* cDNA constructs in grey and *pgant7* cDNA construct in dark grey. Approximate positions of the conserved GalNAc-transferase catalytic DXH motif, inactivating *pgant35A* D243N mutation and conserved lectin CLD

motifs are indicated. For pgant35A/T11 the size of the N-terminal pgant35A (amino acids 1–110) and C-terminal GalNAc-T11 (amino acids 117–608) are underlined. Figures are based on assignments from GenBank accession numbers given in Section 2. Potential N-glycan sites (Ψ) are shown for GalNAc-T11, pgant35A and pgant35A/T11. Designated names of the constructs used in this study, as described in the Materials and methods section, are shown in parenthesis

of pgant35A, hereafter designated pCaSper4-pgant35Awt. In brief, primers TSHC269 (5'-CGAGGATCCAACAA CAGCGACAACA) and TSHC270 (5'-CGAGGATCC TGCCTGCTGTCGGTTGC) were used to amplify base pairs 722 to 4568 of pCaGa1 (BamHI restriction sites are shown in bold) covering pgant35A. The generated product was inserted into the BamHI site of pBluescript KS+ (Stratagene) and fully sequenced. The pgant35A insert was cloned into the BamHI site of the Drosophila expression vector pCaSpeR4 (GenBank accession number U60731) to yield pCaSpeR4-pgant35Awt. The conserved GalNActransferase GT1 DXH motif of pgant35A was mutated to NSH by assembly-PCR using TSHC269 and TSHC272 (5'-ATGCGAGTTGAGGAAGACGAG) for the 5' part and

TSHC271 (5'-CGTCTTCCTCAACTCGCATATC) and TSHC270 for the 3' portion (mutated position 2505 underlined). Amplification of the assembled fragments using TSHC269 and TSHC 270 yielded a genomic *pgant35A* clone with position 2505G exchanged to A. The clone was fully sequenced in pBluescript KS+ and inserted into pCaSpeR4 as described above and designated *pCaSper4-pgant35Amut*.

Constructs for human *GalNAc-T11*, *pgant35A*, chimeric *pgant35A/T11* and *pgant7*

Full length human GalNAc-T11 (GenBank accession number Y12434) encoding amino acids 1-609 was amplified using primers EBHC615 (5'-GCGAATTCACCATGGGAAGTGT

Table 1 Rescue attempts of the *l(2)35Aa* recessive lethality by genomic transgenes, *pCaSpeR4-pgant35A* wt (wild type *pgant35A* gene) or *pCaSpeR4-pgant35A* mut (D243N inactivated *pgant35A* gene)

Crosses	Progeny with genomic transgene		
	Cy^{+} a (trans-heterozygous mutant)	Cy^{-a} (heterozygous mutant)	
	0	692	
\emptyset w- / Y; Df(2L)b84h1/ CyO P{w+GFP} X \emptyset w- pCaSpeR4-pgant35Awt/ w-; b pgant35A³ / CyO P{w+GFP}	313	1061	

^a Cy⁻ indicates flies carrying curly wings; Cy⁺ indicates non-curly flies

Table 2 Rescue attempts of the *l*(2)35Aa recessive lethality by *pgant35A* cDNA transgene *pCaSpeR-pgant35A* under temperature dependent *Hsp70* promoter control

Crosses	Cy^+ progeny				
	b^{+a} (heterozygous mut	ant)	b^{-a} (trans-heterozygous mutant)		
	$w^{+\ b}$ (with transgene)	w^{-b} (without transgene)	w^+ (with transgene)	w-(without transgene)	
$\sqrt[3]{w-/Y}$; b pgant35A ³ / CyO P{w+GFP} X $\stackrel{\bigcirc}{\hookrightarrow}$ w- pCaSpeR- pgant35A / w-; Df(2L)b84h1/+	308	258	293	0	

^a Deficiency chromosome Df(2L)b84h1 carries a recessive marker, black. b^- indicates flies carrying black body color; b^+ indicates non-black flies. ^b w^- indicates flies with white eye color; w^+ indicates flies with red eye color which is the marker of transgenes. * The cross was performed at 25 degree

CACAGTTCGG)/EBHC631 (5'-GCGAATTCCACCTTA ACCTTCCAAATGC), human kidney total RNA (Clontech, Palo Alto, USA) SuperscriptII reverse transcriptase (Invitrogen, Carlsbad, USA) and PfU Ultra DNA polymerase (Stratagene, La Jolla, USA) as recommended by the supplier. EcoRI restriction enzyme overhangs are underlined. Generated product was inserted into the EcoRI site of pBluescript/PBKS (Stratagene, La Jolla, USA) and insert fully sequenced using BigDye terminator chemistry (Applied Biosystems, Foster City, USA) and ABI377 Prism sequenator (Applied Biosystems, Foster City, USA), generating GalNAc-T11/PBKS. Human GalNAc-T11 insert was sub-cloned into the EcoRI site of hsp70 promoter driven Drosophila expression vector pCaSpeR-hs-act (GenBank accession number U60735), or the Gal4 driven vector pUAST [30], generating pCaSpeR-GalNAc-T11 and pUAST-GalNAc-T11, respectively.

Full length *pgant35A* (GenBank accession number AF158747) cDNA was generated by PCR using TSHC1 and TSHC3 [27] and EST clone LD24449 as template. The product was inserted into pBluescript KS+, fully sequenced, and cloned into the BamHI site of *pCaSpeR-hs-act* allowing for Hsp70 heat inducible gene induction [31], generating *pCaSpeR-pgant35A*. To allow for expression in the *Gal4* driver lines, full-length *pgant35A* cDNA was inserted into the BglII-site of pUAST, generating *pUAST-pgant35A*. Full

number AF493067) was cloned as described, fully sequenced, and inserted into the EcoRI site of pCaSpeR-hsact, yielding pCaSpeR-pgant7, and the EcoRI site of pUAST, generating pUAST- pgant7, respectively. The pgant35A/ GalNAc-T11 chimera was made by fusion of the pgant35A N-terminal part encoding amino acids 1-110, with the Cterminal part of human GalNAc-T11 encoding amino acids 117-609. A DNA fragment encoding the N-terminal part of pgant35A (1-110) was amplified using pBKS-pgant35A as template, vector T7primer/DT1STEM (5'-CGAGCTCCTG AGGCAAGCTTGTAGCCAATGTCGCGTATG) and PfU Ultra DNA-polymerase. A DNA fragment encoding the cterminal part of human GalNAc-T11 (117-609) was amplified using pBKS-GalNAc-T11 as template, vector T3primer/ T11CAT (AGCGAAGCTTCATGCTCTTAATATGCTTAT CAGTGAC) and PfU Ultra DNA-polymerase. In frame HindIII primer overhangs have been underlined. N-terminal pgant35A NotI/HindIII fragment and C-terminal human GalNAc-T11 HindIII/KpnI fragments were ligated into the NotI/KpnI site of pUAST, generating the chimeric construct pUAST-pgant35A/GalNAc-T11- (pUAST-pgant35A/T11).

length cDNA of pgant7 (CG6394) (GenBank accession

A secreted N-terminally HIS-tagged *pgant35A*/T11 insect cell expression construct was made. In brief, *pUAST-pgant35A*/T11 was used as template for amplification of a

Table 3 Rescue attempts of the l(2)35Aa recessive lethality by UAS transgenes of pgant35A cDNA (pUAST-pgant35A), another Drosophila isoform pgant7 cDNA (pUAST-pgant7), or human ortholog GalNAcT11

cDNA (pUAST-hGalNAcT11). Transgenes were driven under ubiquitous armadillo-Gal4 using UAS/Gal4 system

Crosses	Tb^{+a} (progeny with transgene)	
	Cy^+ (trans-heterozygous mutant)	Cy (heterozygous mutant)
$\fill Df(2L)b84h1/CyO;\ pUAST-\ pgant35A/TM6B\ X\ \goping\ pgant35A^3,\ arm-Gal4/CyO$	70	160
∂ Df(2L)b84h1/ CyO; pUAST-pgant7/ TM6B X $♀$ pgant35A³, arm-Gal4/ CyO	0	338
∂ Df(2L)b84h1/ CyO; pUAST-hGalNAcT11/ TM6B X $♀$ pgant35A³, arm-Gal4/ CyO	0	200

^a Tb⁺ indicates flies without dominant marker Tubby, a marker on TM6B balancer

secreted construct of the chimera lacking amino acids 1–30 (of the *pgant35A*) using primers dT1SOL (5'-GCGGAATTCTCTCGCACAGCCTGCGCAGCTCCATC)/EBHC631 (EcoRI overhang shown underlined). PCR product was inserted into the EcoRI/NotI sites, in-frame and down-stream of the previously described 6xHis-T7-tagged pAcGP67 vector [32], creating pAcGP67-HIS-*pgant35A*/T11.

Polypeptide GalNAc-transferase assays

Human GalNAc-T11 and *pgant35A*/T11 were expressed as soluble secreted N-terminally truncated proteins in insect cells and semi-purified as previously described [32]. Screening assays for GalNAc-transferases with peptides were performed with UDP-[¹⁴C]-GalNAc essentially as previously described using 10 ug of acceptor peptides, and 1 μg of purified recombinant *pgant35A*/T11 or GalNAc-T11. Peptides were custom synthesized by Neosystems (France) or Schafer-N (Denmark).

Expression of human *GalNAc-T11* and chimeric *pgant35A/T11* in *S2* cells

Drosophila Schneider's cells line 2 (S2 cells) were cultured in insect cell SFM (Serum-free medium, Invitrogen) and transiently co-transfected *pUAST*-Gal-NAc-T11 or *pUAST-pgant35A*/T11 and pRmHa3-Gal4, and pRmHa3-Notum-GT [33] using Cellfectin (Invitrogen). Expression was induced by addition of 0.7 mM CuSO₄ for 2 days.

Drosophila S2 cells grown in chamber slides (Nunc) were fixed in 4% Formaldehyde diluted in PBS for 10 min followed by two 10-minute washes with PBT (0.2% Triton X-100 in PBS) and 30 min blocking in BBT (0.1% BSA in PBT). The samples were incubated with primary and secondary antibodies for 1 h each at room temperature, with three 15-minute washes with BBT in between.

Antibodies and reagents used for staining were as follows: Murine anti-human GalNAc-T11 monoclonal antibody UH8, without dilution [27], guinea pig anti-Notum 1:100 [33], fluorophore-conjugated secondary antibodies (Jackson ImmunoResearch), and DAPI (Sigma) for nuclei staining.

Drosophila strains and genetics

Armadillo-Gal4 (II), and tubulin-Gal4 (III) are described in FlyBase (http://flybase.bio.indiana.edu/). Pgant35A³, Df (2L)b84h1/CyO (34D4; 35A4) are described in Flybase and [27]. In brief, Pgant35A³ carries a nonsense mutation introducing a stop codon at position 195 of pgant35A [29]. Stocks carrying Pgant35A³ with a ubiquitous driver

(armadillo-Gal4 or tubulin-Gal4) and stocks carrying Df (2L)b84h1/CyO with a UAS line were established. Two to three independent UAS insertions were tested for each construct. The transgenic flies were obtained by coinjecting the construct with helper DNA. Their ability to rescue the lethality of trans-heterozygous mutant $Pgant35A^3/Df(2L)b84h1$ was assayed by counting the number of mutants that survived with and without the transgenes.

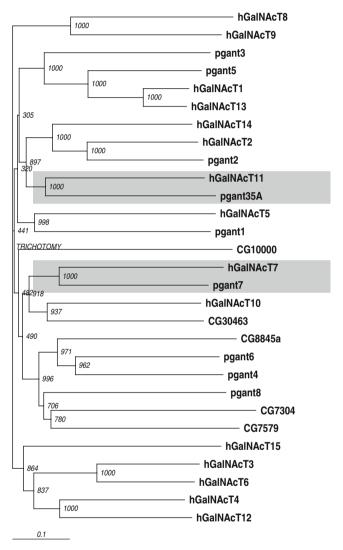


Fig. 2 Phylogenetic analysis of published human and fly [27, 54] GalNAc-transferase genes. Human GenBank accession numbers used for the analysis were; GalNAcT1 X85018, GalNAcT2 X85019, GalNAcT3 X92689, GalNAcT4 Y08564, GalNAcT5 AJ245539, GalNAcT6 Y08565, GalNAcT7 AJ002744, GalNAcT8 AJ271385, GalNAcT9 AB040672, GalNAcT10 AJ505950, GalNAcT11 Y12434, GalNAcT12 AJ132365, GalNAcT13 AJ505991, GalNAcT14 Y09324, GalNAcT15 NM_054110. Phylogenetic tree was based on Clustal W alignments [55] and trees were drawn using TreeView (Win32) software (http://taxonomy.zoology.gla.ac.uk/rod/rod.html). The two distinct clades containing hGalNAc-T11/pgant35A and hGalNAcT7/pgantt7 have been highlighted in shaded boxes

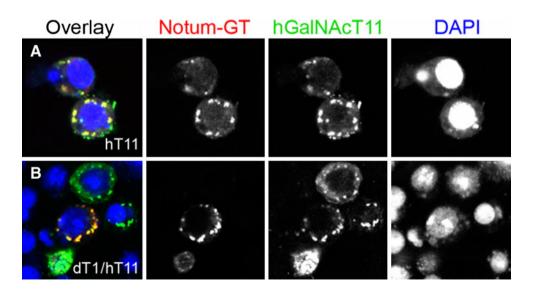
Results

The coding region and catalytic function of pgant35A is required for rescue of l(2)35Aa

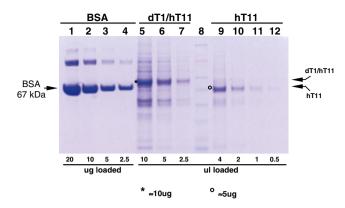
We initially demonstrate that the coding region of pgant35A is essential for development by rescue of the l(2)35Aa mutant with a 3.8 kb genomic construct containing the minimal pgant35A locus devoid of all other flanking sequences pCaSpeR4-pgant35Awt (Fig. 1 and Table 1) or cDNA containing only the full coding region of pgant35, pCaSpeR-pgant35A (Fig. 1 and Table 2). In both cases flies carrying one copy of pgant35A were found to rescue the lethality of l(2)35Aa. These results are in agreement with a recent report by E. Tian et al. [28], where it was shown that pgant35A cDNA under control of the ubiquitous tubulin-Gal4 driver, rescued the lethality and gave rise to viable and fertile progeny. We further confirmed that the catalytic functions of pgant35A is required by demonstrating that a mutant construct with a single inactivating substitution in the DxH motif, D243N, did not rescue *l(2)35Aa* (Fig. 1 and Table 1).

Rescue was also obtained when *pgant35A* cDNA was put under control of the ubiquitously expressed *armadillo-GAL4* driver [30] to direct expression of *pUAS-pgant35A* (Table 3), which indicates that ectopic expression of *pgant35A* does not affect development. Comparable rescue was obtained using *actin-GAL4* (data not shown) and using a *Hsp70* promoter to direct *pgant35A* cDNA expression (Table 2). Since ubiquitous *pgant35A* clearly supported rescue, an attempt was made to determine at what embryonic stage *pgant35A* expression might be critical for development. This was done by putting ectopic *pgant35A* expression under inducible Hsp70 promoter control, allowing for heat inducible expression of *pgant35A*. Surprisingly, transgenic flies possessing an ectopic *Hsp70* driven

pCaSpeR- pgant35A copy were found to rescue *l*(2)35Aa lethality even when grown under non-permissive conditions, see Table 2. This latter finding is most likely due to a low basal level of "leaky" *Hsp70* promotor activity even under non-permissive conditions [31].


Rescue of l(2)35Aa is isoform specific

GalNAc-transferase isoforms have different in vitro substrate specificities, although a degree of overlap exists. We previously demonstrated that pgant35A and pgant7 cluster into two distinct evolutionary conserved subfamilies (Fig. 2) and that they have markedly different in vitro substrate specificities using a panel of peptides and GalNAc-glycopeptides derived from human glycoproteins [27]. We therefore tested if pgant7 could rescue l(2)35Aa mutants. Transgenic flies expressing pgant7 under the control of arm-GAL4 did not rescue *l(2)35Aa* (Table 3). Wild type flies with the armadillo-GAL4 and UAS-pgant7 were viable and fertile suggesting that ectopic expression of this isoform does not affect normal development. Several independent transgenic lines of UAS-pgant7 were tested with armadillo-GAL4 and with actin-GAL4 or under control of the Hsp70 promoter and all failed to rescue the l(2)35Aa mutant (data not shown). This result provides additional support for the specific requirement of distinct functions of GalNAc-transferase isoforms in whole organisms.


The predicted human ortholog of Drosophila *pgant35A*, GALNT11, does not rescue (1(2)35Aa

Previous *in vitro* analyses of *pgant35A* and human GalNAc-T11 iso-forms have suggested that these enzymes were putative orthologs with almost identical substrate specificities and site preference [27, 34]. Phylogenetic

Fig. 3 Cytolocalization of human GalNAc-T11 (hT11) and chimeric pgant35A/T11 (dT1/hT11) in S2 cells. Human GalNAc-T11 (panel A) or chimeric pgant35A/T11 (panel B) expressed and co-localized with Golgi Notum marker (Notum-GT). Immunohistochemical stainings show Golgi marker and GalNAcT11 or pgant35A /T11 co-localized in Golgi, overlay in yellow. Nuclei were stained with DAPI in blue. Panels A and B from left to right; merged image, split channel of Golgi marker, human GalNAcT11 or pgant35A /T11 and DAPI

Fig. 4 SDS PAGE Coomassie stain of recombinant secreted forms of chimeric *pgant35A*/T11 (dT1/hT11) and human GalNAc-T11 (hT11), semi-purified from Sf9-cells. Known amounts of BSA was loaded together with various volumes of semi purified dT1/T11 or human hT11. Estimated protein sizes for dT1/T11 and human hT11 are app. 68 KDa, size difference observed is attributed to the presence of potentially 1 additional N-glycan in dT1/T11, see Fig. 1. * marked dT1/hT11 band, amount estimated to 10 ug/10 ul loaded =1 mg/ml protein concentration. ° marked hT11 band, amount estimated to 5 ug/4 ul loaded =1.25 mg/ml protein concentration

analyses clearly support that the two genes are potential orthologs and as shown in Fig. 2 the two genes group in the same clade. Thus, the hypothesis that the two genes have been functionally conserved during evolution was tested by expressing pUAS-GalNAc-T11 in trans-heterozygous mutant l(2)35Aa flies (Table 3). Rescue experiments were performed on two independent transgenic lines in combination with armadillo-GAL4 or actin-GAL4 (data not shown). Over expression of human GalNAc-T11 did not lead to lethality, and immunocytology studies indicated that expression was properly co-localized with a known Golgi-marker [33] in *Drosophila* cells (Fig. 3). Nevertheless, GalNAc-T11 did not appear to rescue the l(2)35Aa mutant. We further tested if a chimeric construct, pUAS-pgant35A/T11, comprised of the cytoplasmic, transmembrane and part of the pgant35A stalk fused to the catalytic and lectin domains of human GalNAc-T11 complemented the mutation (Fig. 1). The chimeric protein was expressed and localized to the Golgi compartment in Drosophila S2 cells (Fig. 3) and purified soluble secreted chimeric protein expressed in insect cells was shown to have the predicted catalytic function of human GalNAc-T11 (Table 4). Several independent transgenic lines expressing pUAS- pgant35A/T11-chimera under control of tubulin-GAL4 or actin-GAL4 also failed to rescue the l(2)35Aa mutants (Table 5). The reason for lack of complementation with human GalNAc-T11 is unknown. Cross-species transgene expression of human gene homologs in *Drosophila* has been successful in the past [35, 36], and we have found that a human β 4-galactosyltransferase, β 4Gal-T6, rescues the Drosophila egghead \(\beta 4-mannosyltransferase \) mutant despite the fact that the two enzymes produce different products [37].

Discussion

The results of this study provide evidence that the catalytic function of the *pgant35A* GalNAc-transferase isoform is required for *Drosophila* development. The study furthermore demonstrates that the essential catalytic function of this enzyme cannot be substituted by another GalNAc-transferase isoform or even the putative human ortholog. The results stress that polypeptide GalNAc-transferases in animal cells serve unique and non-redundant functions directed at least in part by the substrate specificity of the catalytic unit.

GalNAc-transferases are unique among mammalian glycosyltransferases in having a C-terminal distinct lectin domain [38]. The lectin domain is a separate fold linked through a short flexible linker region [39]. Studies of some isoforms show that the lectin domains bind GalNAc-glycopeptides [32] and modulate the substrate specificity and kinetic properties of GalNAc-transferases [40–43], and it is expected that most if not all have functional lectin

Table 4 Acceptor substrate specificities of GalNAc-transferase chimera pgant35A/T11 and human GalNAc-T11

Acceptor peptide	Amino acid sequence	pgant35A/T11		human GalNAc-T11	
		Substrate specificity ^a mU/ml	Specific activity <i>U/mg</i>	Substrate specificity ^a mU/ml	Specific activity <i>U/mg</i>
IgA hinge	VPSTPPTPSPSTPPTPSPSK	34.74	0.87	53.26	1.33
OSM	LSESTTQLPGGGPGCA	4.17	0.10	4.25	0.11
MUC1	AHGVTSAPDTR	7.59	0.19	35.65	0.89
MUC2-1	${\tt PTTTPITTTTVTPTPTTTTQTQTPTTTPISTTC}$	10.06	0.25	22.79	0.67

^a Activity was determined in 25 ul reactions containing 10 ug peptide substrate and 0.04 mg/ml semi purified *pgant35A*/T11 or human GalNAc-T11, 0.2 mM UDP-GalNAc (3153 cpm/nmol), 1× cacodylate buffer in a 30 min. 37C reaction. Enzyme amount was estimated from coomassie gels depicted in Fig. 4. The acceptor peptides were derived from sequences from the tandem repeats of ovine submaxillary mucin (OSM), human MUC1or MUC2 or the mucin like domain found in the hinge region of human IgA

Table 5 Rescue attempts of the l(2)35Aa recessive lethality by Drosophila/human chimeric pgant35A/T11 (UAS-pgant35A/T11) transgene, under the control of tubulin-Gal4

Crosses	Ser^{+a}		Ser^{-a}	
	Cy^+	Cy ⁻	Cy^+	Cy^-
∂ Df(2L)b84h1/CyO; pUAST-pgant35A/T11/ TM3 X $♀$ pgant35A ³ / CyO; tub-Gal4/ TM3	0	77	0	120

^a Ser⁻ indicates flies carrying notched wings due to the dominant mutations Serrate; Ser⁺ indicates flies without the dominant marker Serrate

domains with similar functions. The catalytic unit of GalNAc-transferases are distinct folds and active enzymes missing the entire lectin domain or with mutated lectin domains have been expressed and shown to retain intrinsic GalNAc-transferase enzymatic activity [40, 43].

We were surprised to find that human GalNAc-T11, which we previously showed to have essentially the same *in vitro* substrate specificity as Drosophila *pgant35A* [27] did not rescue *l(2)35Aa* mutants. The substrate specificities were studied using a large panel of peptide substrates from different human O-glycoproteins and both enzymes were distinctly different from many other human GalNActransferase isoforms tested. It is possible that substrates derived from *Drosophila* glycoproteins would show differences that can explain the lack of complementation, however, the identity of *Drosophila* O-glycoproteins are only now becoming available [44].

Another possibility we tested was whether the cytoplasmic, transmembrane and stem regions of pgant35A were important for rescue with the catalytic domain of the human GalNAc-T11 enzyme. A number of studies have demonstrated the importance of the transmembrane regions of glycosyltransferases for Golgi localization [45, 46]. Furthermore, in this study the chimeric construct included all amino-terminal non-catalytic regions of pgant35A, which should support correct steady state Golgi-localization through dynamic interactions with for example peripheral Golgi membrane proteins [47–49]. Interestingly, the consensus signal retention motif (-F/L-L/V-S/T-) identified in the cytoplasmic region of yeast glycosyltransferases [47] is not found in most Drosophila and mammalian glycosyltransferases, but the cytoplasmic regions of pgant35A (-L-G-T-) and GalNAc-T11 (-S-V-T-) appear to contain a motif similar to the suggested consensus motif. This motif has been shown to interact with the peripheral Golgi protein Vps74p and COPI in yeast, and found to play a decisive role in retrograde transport of Golgi resident glycosyltransferases. Vps74p is highly homologous to the human GMx33 Golgi matrix proteins, but further studies are required to address the existence and function of similar mechanisms in mammalian cells in general and in relation to the enzymes discussed in this study. In spite of these considerations, complementation with the functionally active Golgi targeted chimera failed to support rescue of the lethal l(2)35Aa fly phenotype. This result could be explained by the finding that Drosophila Golgi units are dispersed throughout the cell, and that these stacked units in Drosophila imaginal discs cells have been shown to be functionally diverse [50]. This could suggest that Drosophila Golgi resident proteins localize in distinct units. In contrast the Golgi complex in mammalian cells consists of a network of tubular membranes interconnected through intercisternal connections [51]. Thus, sub-cellular localization of glycosyltransferases in mammalian cells may depend on specific oligomeric interactions within sub-Golgi compartments in order for them to act correctly. This has been shown for enzymes involved in glycolipid biosynthesis where early acting glycosyltransferases physically associate in heteromeric Golgi complexes [52]. Likewise, the regulated biosynthesis of mucin-type O-glycans could be controlled by the restricted organization of glycosyltransferases with shared functions [53] and/or oligomerization of individual components of the "O-glycosylation machinery" in sub-Golgi compartments. Thus, the orchestration of individual glycosyltransferases in dispersed Drosophila Golgi units and in mammalian tubular Golgi membrane complexes may differ significantly, which could explain the lack of complementation obtained using the orthologous pgant35A and GalNAc-T11 genes in this study. Taken together, our results using human GalNAc-T11 and the chimeric rescue constructs, clearly suggest, that pgant35A and human GalNAc-T11 serve unique species specific cellular functions.

In summary, the l(2)35Aa model has allowed us to begin addressing functions of the functional domains of GalNActransferases as well as the functions of individual GalNActransferase isoforms *in vivo*. Further studies are needed to decipher the essential molecular O-glycosylation reaction(s) mediated by pgant35A.

Acknowledgements We thank Ann-Mari Voie for fly injections to generate transgenic lines. We also thank Eva Loeser for technical support on fluorescent immunostaining in *Drosophila* S2 cells. Camilla Andersen for technical support in cloning. Carlos Flores, University of Wisconsin, Madison, Wisconsin, USA for genomic *pgant35A* and *pgant35A* (D243N) fly genetics. The study was supported in part by the Danish Research council, The Carlsberg Foundation, and a Centre of Excellence grant from University of Copenhagen and the EMBL.

References

- Hassan, H., Bennett, E.P., Mandel, U., Hollingsworth, M.A., Clausen, H.: Control of Mucin-Type O-Glycosylation: O-Glycan occupancy is directed by substrate specificities of polypeptide GalNAc-transferases. In: Ernst, B., Hart, H., Sinay, P. (eds.) Saccharides in chemistry and biology - a comprehension handbook, pp. 273–292. Wiley-VCH Publishers, Weinheim (2000)
- Ten Hagen, K.G., Fritz, T.A., Tabak, L.A.: All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology 13 (2002).
- Chen, J., Litscher, E.S., Wassarman, P.M.: Inactivation of the mouse sperm receptor, mZP3, by site-directed mutagenesis of individual serine residues located at the combining site for sperm. PNAS 95, 6193–6197 (1998)
- Fukuda, M.: Roles of mucin-type O-glycans in cell adhesion. Biochim. Biophys. Acta 1573, 394–405 (2002)
- Kozarsky, K., Kingsley, D., Krieger, M.: Use of a mutant cell line to study the kinetics and function of O-linked glycosylation of low density lipoprotein receptors. Proc. Natl. Acad. Sci. U. S. A. 85, 4335–4339 (1988)
- Kozarsky, K.F., Call, S.M., Dower, S.K., Krieger, M.: Abnormal intracellular sorting of O-linked carbohydrate-deficient interleukin-2 receptors. Mol. Cell Biol. 8, 3357–3363 (1988)
- Matzuk, M.M., Krieger, M., Corless, C.L., Boime, I.: Effects of preventing O-glycosylation on the secretion of human chorionic gonadotropin in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. U. S. A. 84, 6354–6358 (1987)
- 8. Jablonka-Shariff, A., Garcia-Campayo, V., Boime, I.: Evolution of lutropin to chorionic gonadotropin generates a specific routing signal for apical release *in vivo*. J. Biol. Chem. **277**, 879–882 (2002)
- Spodsberg, N., Alfalah, M., Naim, H.Y.: Characteristics and structural requirements of apical sorting of the rat growth hormone through the O-Glycosylated stalk region of intestinal sucraseisomaltase. J. Biol. Chem. 276, 46597–46604 (2001)
- Bruneau, N., Nganga, A., Fisher, E.A., Lombardo, D.: O-Glycosylation of C-terminal tandem-repeated sequences regulates the secretion of rat pancreatic bile salt-dependent lipase. J. Biol. Chem. 272, 27353–27361 (1997)
- Duguay, S.J., Jin, Y., Stein, J., Duguay, A.N., Gardner, P., Steiner, D.F.: Post-translational processing of the insulin-like growth factor-2 precursor. analysis of O-glycosylation and endoproteolysis. J. Biol. Chem. 273, 18443–18451 (1998)
- Breuza, L., Garcia, M., Delgrossi, M.H., Le Bivic, A.: Role of the membrane-proximal O-glycosylation site in sorting of the human receptor for neurotrophins to the apical membrane of MDCK cells. Exp. Cell Res. 273, 178–186 (2002)
- Yeaman, C., Gall, A.H., Baldwin, A.N., Monlauzeur, L., Bivic, A. L., Rodriguez-Boulan, E.: The O-glycosylated stalk domain is required for apical sorting of neurotrophin receptors in polarized MDCK cells. J. Cell Biol. 139, 929–940 (1997)
- Leppanen, A., Yago, T., Otto, V.I., McEver, R.P., Cummings, R.D.: Model glycosulfopeptides from P-selectin glycoprotein Ligand-1 require tyrosine sulfation and a core 2-branched O-Glycan to bind to L-selectin. J. Biol. Chem. 278, 26391–26400 (2003)
- McEver, R.P.: Selectins: lectins that initiate cell adhesion under flow. Curr. Opin. Cell Biol. 14, 581–586 (2002)
- Lowe, J.B.: Glycan-dependent leukocyte adhesion and recruitment in inflammation. Curr. Opin. Cell Biol. 15, 531–538 (2003)
- Fukuda, M.: Possible roles of tumor-associated carbohydrate antigens. Cancer Res 56, 2237–2244 (1996)
- Tian, E., Ten Hagen, K.G.: Recent insights into the biological roles of mucin-type O-glycosylation. Glycoconj. J. (2008).
- Wandall, H.H., Hassan, H., Mirgorodskaya, E., Kristensen, A.K., Roepstorff, P., Bennett, E.P., Nielsen, P.A., Hollingsworth, M.A.,

- Burchell, J., Taylor-Papadimitriou, J., Clausen, H.: Substrate specificities of three members of the human UDP-N-Acetyl-alpha-D-galactosamine:Polypeptide N-Acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3. J. Biol. Chem. **272**, 23503–23514 (1997)
- Bennett, E.P., Hassan, H., Clausen, H.: cDNA cloning and expression of a novel human UDP-N-acetyl-alpha-D-galactosamine polypeptide N-acetylgalactosaminyltransfersae, GalNAc-T3. J. Biol. Chem. 271, 17006–17012 (1996)
- Kingsley, P.D., Hagen, K.G.T., Maltby, K.M., Zara, J., Tabak, L.
 A.: Diverse spatial expression patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyl-transferase family member mRNAs during mouse development. Glycobiology 10, 1317–1323 (2000)
- Xia, L., Ju, T., Westmuckett, A., An, G., Ivanciu, L., McDaniel, J. M., Lupu, F., Cummings, R.D., McEver, R.P.: Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J. Cell Biol. 164, 451–459 (2004)
- Tenno, M., Ohtsubo, K., Hagen, F.K., Ditto, D., Zarbock, A., Schaerli, P., von Andrian, U.H., Ley, K., Le, D., Tabak, L.A., Marth, J.D.: Initiation of protein O glycosylation by the polypeptide GalNAcT-1 in vascular biology and humoral immunity. Mol. Cell Biol. 27, 8783–8796 (2007)
- 24. Topaz, O., Shurman, D.L., Bergman, R., Indelman, M., Ratajczak, P., Mizrachi, M., Khamaysi, Z., Behar, D., Petronius, D., Friedman, V., Zelikovic, I., Raimer, S., Metzker, A., Richard, G., Sprecher, E.: Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat/ Genet/ (2004).
- Kato, K., Jeanneau, C., Tarp, M.A., Benet-Pages, A., Lorenz-Depiereux, B., Bennett, E.P., Mandel, U., Strom, T.M., Clausen, H.: Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J. Biol. Chem. 281, 18370–18377 (2006)
- Hagen, K.G.T., Tran, D.T.: A UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferase is essential for viability in Drosophila melanogaster. J. Biol. Chem. 277, 22616–22622 (2002)
- Schwientek, T., Bennett, E.P., Flores, C., Thacker, J., Hollmann, M., Reis, C.A., Behrens, J., Mandel, U., Keck, B., Schafer, M.A., Haselmann, K., Zubarev, R., Roepstorff, P., Burchell, J.M., Taylor-Papadimitriou, J., Hollingsworth, M.A., Clausen, H.: Functional conservation of subfamilies of putative UDP-N-acetylgalactosamine: Polypeptide N-Acetylgalactosaminyltransferases in Drosophila, Caenorhabditis elegans, and mammals. One subfamily composed of I(2)35Aa is essential in Drosophila. J. Biol. Chem. 277, 22623– 22638 (2002)
- Tian, E., Ten Hagen, K.G.: A UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase is required for epithelial tube formation. J. Biol. Chem. 282, 606–614 (2007)
- Flores, C., Engels, W.: Microsatellite instability in Drosophila spellchecker1 (MutS homolog) mutants. Proc. Natl. Acad. Sci. U. S. A. 96, 2964–2969 (1999)
- Brand, A.H., Perrimon, N.: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993)
- Brand, A.H., Manoukian, A.S., Perrimon, N.: Ectopic expression in Drosophila. Methods Cell Biol. 44, 635–654 (1994)
- 32. Wandall, H.H., Irazoqui, F., Tarp, M.A., Bennett, E.P., Mandel, U., Takeuchi, H., Kato, K., Irimura, T., Suryanarayanan, G., Hollingsworth, M.A., Clausen, H., The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Glycobiology (2007).
- Giraldez, A.J., Copley, R.R., Cohen, S.M.: HSPG modification by the secreted enzyme Notum shapes the wingless morphogen gradient. Dev. Cell. 2, 667–676 (2002)

- Ten Hagen, K.G., Tran, D.T., Gerken, T.A., Stein, D.S., Zhang, Z.: Functional characterization and expression analysis of members of the UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferase family from Drosophila melanogaster. J. Biol. Chem. 278, 35039– 35048 (2003)
- Eissenberg, J.C., Wong, M., Chrivia, J.C.: Human SRCAP and Drosophila melanogaster DOM are homologs that function in the notch signaling pathway. Mol. Cell Biol. 25, 6559–6569 (2005)
- Benassayag, C., Montero, L., Colombie, N., Gallant, P., Cribbs, D., Morello, D.: Human c-Myc isoforms differentially regulate cell growth and apoptosis in Drosophila melanogaster. Mol. Cell Biol. 25, 9897–9909 (2005)
- Wandall, H.H., Pizette, S., Pedersen, J.W., Eichert, H., Levery, S. B., Mandel, U., Cohen, S.M., Clausen, H.: Egghead and brainiac are essential for glycosphingolipid biosynthesis *in vivo*. J. Biol. Chem. 280, 4858–4863 (2005)
- Imberty, A., Piller, V., Piller, F., Breton, C.: Fold recognition and molecular modeling of a lectin-like domain in UDP- GalNac: polypeptide N-acetylgalactosaminyltransferases. Protein Eng. 10, 1353–1356 (1997)
- Fritz, T.A., Raman, J., Tabak, L.A.: Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha -N-acetylgalactosaminyltransferase-2. J. Biol. Chem. (2006).
- Hassan, H., Reis, C.A., Bennett, E.P., Mirgorodskaya, E., Roepstorff, P., Hollingsworth, M.A., Burchell, J., Taylor-Papadimitriou, J., Clausen, H.: The Lectin Domain of UDP-N-acetyl-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase-T4 Directs Its Glycopeptide Specificities. J. Biol. Chem. 275, 38197–38205 (2000)
- Tenno, M., Kezdy, F.J., Elhammer, A.P., Kurosaka, A.: Function of the lectin domain of polypeptide N-acetylgalactosaminyltransferase
 Biochem. Biophys. Res. Commun. 298, 755–759 (2002)
- Tenno, M., Saeki, A., Kezdy, F.J., Elhammer, A.P., Kurosaka, A.: The lectin domain of UDP-GalNAc:Polypeptide N-Acetylgalactosaminyl transferase 1 is involved in O-Glycosylation of a polypeptide with multiple acceptor sites. J. Biol. Chem. 277, 47088–47096 (2002)
- Raman, J., Fritz, T.A., Gerken, T.A., Jamison, O., Live, D., Lu, M., Tabak, L.A.: The catalytic and lectin domains of UDP-GalNAc :Polypeptide alpha-N-Acetylgalactosaminyltransferase function in concert to direct glycosylation site selection. J. Biol. Chem. (2008) M803387200.
- 44. Schwientek, T., Mandel, U., Roth, U., Muller, S., Hanisch, F.G.: A serial lectin approach to the mucin-type O-glycoproteome of

- Drosophila melanogaster S2 cells. Proteomics **7**, 3264–3277 (2007)
- Dahdal, R.Y., Colley, K.J.: Specific sequences in the signal anchor of the beta-galactoside alpha-2, 6-sialyltransferase are not essential for Golgi localization. Membrane flanking sequences may specify Golgi retention. J. Biol. Chem. 268, 26310–26319 (1993)
- Paulson, J.C., Colley, K.J.: Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J. Biol. Chem. 264, 17615–17618 (1989)
- Schmitz, K.R., Liu, J., Li, S., Setty, T.G., Wood, C.S., Burd, C.G., Ferguson, K.M.: Golgi localization of glycosyltransferases requires a Vps74p oligomer. Dev. Cell. 14, 523–534 (2008)
- 48. Ungar, D., Oka, T., Brittle, E.E., Vasile, E., Lupashin, V.V., Chatterton, J.E., Heuser, J.E., Krieger, M., Waters, M.G.: Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J Cell Biol. 157, 405–415 (2002)
- Tu, L., Tai, W.C.S., Chen, L., Banfield, D.K.: Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321, 404–407 (2008)
- Yano, H., Yamamoto-Hino, M., Abe, M., Kuwahara, R., Haraguchi, S., Kusaka, I., Awano, W., Kinoshita-Toyoda, A., Toyoda, H., Goto, S.: Distinct functional units of the Golgi complex in Drosophila cells. Proc. Natl. Acad. Sci. U. S. A. 20(102), 13467– 13472 (2005)
- Bouchet-Marquis, C., Starkuviene, V., Grabenbauer, M.: Golgi apparatus studied in vitreous sections. J. Microsc. 230, 308–316 (2008)
- Giraudo, C.G., Maccioni, H.J.: Ganglioside glycosyltransferases organize in distinct multienzyme complexes in CHO-K1 cells. J Biol. Chem. 278, 40262–40271 (2003)
- Sheehan, J.K., Kirkham, S., Howard, M., Woodman, P., Kutay, S., Brazeau, C., Buckley, J., Thornton, D.J.: Identification of molecular intermediates in the assembly pathway of the MUC5AC mucin. J. Biol. Chem. (2004) M313241200.
- Ten Hagen, K.G., Zhang, L., Tian, E., Zhang, Y.: Glycobiology on the fly: developmental and mechanistic insights from Drosophila. Glycobiology 19, 102–111 (2009)
- Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G.: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997)

